NUMBER TRICKS

by Theoni Pappas

The amazing 23 tricks—from *Teaching Mathematics* by Max Solbel & Evan Maletsky.

steps:

- 1) Pick a 2-digit number great than 50.
- 2) Add 76 to it.
- 3) Take of this result's hundred's digit and add that digit to the new result.
- 4) Finally, subtract this result from the number you chose.
- 5) Write your answer on a piece of paper, and hand it to me.
- 6) Burn this somewhere safe, or use your magic ashes on the paper, rub gently over to top of your hand where you had written the number 23 using a bar of soap, ahead of time.

22 again problem

- 1) Pick three different digits greater than 0.
- 2) Using these form all possible two digit numbers.
- 3) Add up the six two-digit numbers you made.
- 4) Add up the 3 digits you originally selected.
- 5) Divide the sum of the six 2-digits numbers by the sum of the three digits. *Why did we all get 22.*

The 1089 problem

- 1) Pick any 3-digit number in which the 100's place & the one's place digits differ by 2.
- 2) Reverse the one's and 100's digit.
- 3) Subtract the smaller number from the larger one.
- 4) Reverse its. one's and 100's digit.
- 5) Add the last two results...it always comes out to be 1089.

Can't get rid of 1 problem

- 1) Pick any whole number. It doesn't matter what size it is.
- 2)Add 3 to it.
- 3) Now multiply this **sum** by 2.
- 4) Subtract 4 from this **product**.
- 5) Divide this **difference** by 2.
- 6) Finally, subtract your original pick from this quotient.

Solutions to number tricks

The amazing 23 trick—from *Teaching Mathematics* by Max Solbel & Evan Maletsky.

- 1) Pick a 2-digit number great than 50.
- 2) Add 76 to it.
- 3) Take of this result's hundred's digit and add that digit to the new result.
- 4) Finally, subtract this result from the number you chose.
- 5) Write your answer on a piece of paper, and hand it to me.
- 6) Burn this somewhere safe, or use your magic ashes on the paper, rub gently over to top of your hand where you had written the number 23 using a bar of soap, ahead of time.

22 again problem

- 1) Pick three different digits greater than 0.
- 2) Using these form all possible two digit numbers.
- 3) Add up the six two-digit numbers you made.
- 4) Add up the 3 digits you originally selected.
- 5) Divide the sum of the six 2-digits numbers by the sum of the three digits.

Why did we all get 22.

The 1089 problem

- 1) Pick any 3-digit number in which the 100's place & the one's place digits differ by 2.
- 2) Reverse the one's and 100's digit.
- 3) Subtract the smaller number from the larger one.
- 4) Reverse its. one's and 100's digit.
- 5) Add the last two results...it always comes out to be 1089.

Can't get rid of 1 problem

- 1) Pick any whole number. It doesn't matter what size it is.
- 2)Add 3 to it.
- 3) Now multiply this **sum** by 2.
- 4) Subtract 4 from this **product**.
- 5) Divide this **difference** by 2.
- 6) Finally, subtract your original pick from this **quotient.**

HOW THE TRICKS WORK

The amazing 23 trick

Picked ab. Write extended in base ten

$$10a + B$$

$$10a + b + 76$$

$$10a + b + 76 - 100 + 1$$

$$10a + b - 23 - (10a + b) = 23$$

22 again problem

The three choices are represented by a, b, c.

Two digit numbers formed are: ab, ac, ba, bc, ca, cb

Add the up: by writting each # in base ten form:

10a+b

+ 10a+c

+ 10b+a + 10b+c

+10c+a

+10c+b

22a+22b+22c = 22(a+b+c)

dividing this by (a+b+c) gives 22

The 1089 problem

Since the 100s and 1s digits differ by 2, call one **a** and the other is **a-2**. Call the 10s digit **b**.

Our number is **a b (a+2)**. Reversing the 100s and 1s digits, we get (**a+2) b a**.

We subtract the smaller from the larger:

(a+2) b a – a b (a+2). Now write this in base ten form: 100(a+2)+10b+a-100a-10b-(a+2)

Simplifying this, we get 200-2 = 198

Reversing these digits, we get 981

Adding these we get 198+981 = 1089

Can't get rid of 1 problem

- •Let **n** represent the whole number that is chosen.
- Add 3 to it: **n**+3
- •Multiply this sum by 2: 2n+6
- •Subtract 4: 2n+6 4= 2n+2
- Divide by 2: $(2n+2) \div 2 = n+1$
- •Subtract your original # from this quotient:

$$n+1 - n = 1$$